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Abstract: In this paper, we consider a highly simplified deterministic model that incorporates a vaccination 

compartment to the classical SI epidemic model to study the impact of vaccination on the dynamics of infectious 

diseases. We have established results about the stability of the disease free and the endemic equilibria of the model 

as it relates to the basic reproduction number (R0) and numerical simulations have supported our analytical 

results that when R0 < 1, the disease free equilibrium becomes stable and the disease dies out of the population and 

for R0 > 1, the endemic equilibrium becomes stable showing that the disease will spread and persist within its host 

population. Numerical simulations have been used to support the importance of vaccination to a susceptible 

population and suggest a minimum vaccination rate and vaccine loss rate to target in a vaccination campaign. 
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I.    INTRODUCTION 

In the WHO bulletin, Andre et al [1] acknowledges that only clean water performs better than vaccination in the reduction 

of the burden of infectious disease in a population. Vaccination has been so successful that an estimated 20.3 million 

deaths were prevented by the measles vaccine alone between 2000 and 2015[2]. Unfortunately, despite all the progress 

achieved in the developed world, infectious diseases still account for the death of millions of people around the world 

especially in developing countries. Vaccination model like the one developed in this paper therefore becomes a veritable 

tool in the design and understanding of vaccination strategies in such countries with limited resources. 

Mathematical models of the effect of vaccination on the transmission dynamics of infectious diseases can help interpret 

the trial result and generalize the findings to the long term impact of vaccination on the population at various coverage 

levels (see [3 - 9]). In [10], Fred Brauer formulated a simple model for disease transmission with Vaccination based on 

the SIS model with constant birth rate. They studied the properties of the solution, establishing a criterion for its stability. 

They found out that the equilibrium point corresponding to a point on the bifurcation curve with negative slope is 

unstable, and an equilibrium corresponding to a point on the bifurcation curve with positive slope is asymptotically stable 

and also that the system does not admit oscillations about an unstable endemic equilibrium. In this paper, we have adapted 

a classical SI epidemiological model consisting of the infectives (I) and the susceptibles (S) by adding a vaccination 

compartment (V) to have an SIV model. We have shown that if R0 < 1 then the disease free equilibrium is locally 

asymptotically stable and when R0 > 1, then the endemic equilibrium is locally asymptotically stable. Numerical 

simulations support our analytical calculations and also show that we have global asymptotic stability of the disease free 

equilibrium for R0 < 1 and the endemic equilibrium for R0 > 1. The paper is organized as follows: The model is described 

in Section II. The basic reproduction number and relevant results for the stabilities of the disease free and endemic 

equilibria could be found in Section III. We have numerical simulations in IV and conclusion in Section V. 
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II.   DERIVATION OF THE MODEL 

In the derivation of this model, we consider a highly simplified deterministic model that incorporates a vaccination 

compartment to the classical SI epidemic model. Individuals are assumed to be in one of the following epidemiological 

states: Susceptibles (at risk of contracting the disease), Infectives (infected and capable of transmitting the disease), and 

Vaccinated (population vaccinated and are immune to the infection). All recruitment is into the susceptible class, and 

occurs at a constant rate β. A susceptible individual has an average  I contacts that would be sufficient to transmit the 

disease. Thus, the rate at which susceptibles in the population are infected is  SI. We present the model as follows: 
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Where 

 : Birth rate. 

 : Natural death rate. 

 : Rate of infection. 

  : Recovery rate. 

 : Vaccination rate 

 : Rate vaccination loses effect 

The variables S, I and V represent the population of susceptible, infected and vaccinated individuals respectively. This 

model has the death rate, which represent death rate as a result of natural causes. In developing the model, we have 

taken into cognizance the fact that vaccinated individuals lose the effect of the vaccine at a constant rate σ to become 

susceptible again. Since this model is for human population, we assume that all its state variables and parameters are 

nonnegative for all t  ≥ 0. The region biologically relevant is given by 
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The total human population is given by N = S + I + V, so that           , thus       as     . 

III.  STABILITY ANALYSIS 

The basic reproduction number for the model is given as 
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The disease-free equilibrium given by    (        ) is the only equilibrium for R0 ≤ 1, where 
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If R0 > 1, then there is also a unique endemic equilibrium given by E
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Local Stability of the Disease Free Equilibrium. 

The characteristics equation after linearizing (1) about the disease free equilibrium E
0
 gives 
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This gives 

          (     )   and    *   +(    ) 

The first two eigenvalues λ1 and λ2 are negative and if R0 < 1, λ3 is also negative giving us the following theorem. 

Theorem 1. 

The disease-free equilibrium point is locally asymptotically stable when R0 < 1 and unstable when R0 > 1. 

Local Stability of the Endemic Equilibrium 

We analyse the local stability of the endemic equilibrium point in this section. The characteristics equation at the endemic 

equilibrium point E
*
 gives 

 (   )(                                                                     

                                                    )                               ( ) 

This gives      and the solution to the following 
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Equation (7) simplifies to 

(     )   (                     (                 )*    +)                            

  (   )(                 )*    +                                                                              ( ) 

(8) satisfy the Routh Hurwitz stability criterion when R0 > 1, hence all roots of (6) have negative real parts. This gives rise 

to the following theorem. 

Theorem 2.  

The endemic equilibrium point (E
*
) of (1) is locally asymptotically stable when R0 > 1. 

IV.    NUMERICAL SIMULATION 

In this section, we show numerically the established results in earlier sections about the stability of the disease free and 

the endemic equilibria of the model as it relates to the basic reproduction number (R0). The importance of vaccination to a 

susceptible population is highlighted and the plot of the infectives for different values of the vaccination rate has 

suggested a minimum vaccination rate and vaccine loss rate to target in a vaccination campaign. We use the ode23 suite in 

Matlab to simulate system (1) with the parameters as shown below the figures. The parameters are chosen solely for 

simulation convenience and do not reflect actual collected data. 

 

 

Figure 1: Other parameters are: β = 0.81, μ = 0.65, κ = 0.04, ϒ= 0.1 and σ=0.55. 

(b) R0 = 1.5758 > 1, 𝜙 = 0.98 (a) R0 = 0.6753 < 1, 𝜙 = 0.42 
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In figure 1(a), R0 = 0.6753 < 1, hence the disease free equilibrium becomes stable which shows that the infection dies out 

of the population. Figure 1(b) shows the stable endemic equilibrium for R0 = 1.5758 > 1, this means that the disease will 

persist in the population. This simulation agrees with theorems (1) and (2). 

In the next figure, we show the effect the vaccination rate ( ) has on the dynamics of system (1) by plotting the number of 

infectives with varying vaccination rate in fig 2(a) and the vaccination rate against the steady states of the infectives in fig 

2(b). 

 

 

Figure 2: Simulation of the evolution of the infected individuals for different values of vaccination rate  . Other parameters 

are: β = 0.81, μ = 0.65, φ=0.8, ϒ= 0.1 and σ=0.55. 

In the figure below, we simulate the effect the vaccine loss rate (σ) has on the dynamics of system (1) by plotting the 

number of infected individuals with varying vaccine loss rate in fig 3(a) and the vaccine loss rate against the steady states 

of the infectives in fig 3(b). 

 

 

 

 

V.    CONCLUSION 

We conclude that system (1) gives a good mathematical model to study the effect of vaccination in a population and could 

be used with actual data collected from endemic regions for the purpose of strategic planning and control of infectious 

diseases. Targeted vaccination on a population could provide an effective tool in the control of an epidemic as could be 

(b)  𝜅  , .   .  - (a)  𝜅  * .   .    .   .  + 

(b)  𝜎  , .   .  - (a)  𝜎  * .   .    .   .  + 

Figure 3: Simulation of the evolution of the infected individuals for different values of vaccine loss 

rate σ. Other parameters are: β = 0.81, μ = 0.65, φ=0.8, ϒ= 0.1 and κ=0.4. 
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seen in fig. 2(a). The infection was eradicated at the choice of the vaccination rate    .  . Effort in this case has to be 

made to keep the vaccine loss rate   below 0.25 to achieve this as seen in fig. 3(a). 
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